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Abstract 

 
In this paper based on a gearbox model a suitable simplified model of the gear was built and analysed. The main 

focus of interest in this study was to determine the basic parameters affecting the gear rattle generation. The problem 
of meshing gear wheels with spur teeth which can be in mesh on the second line of action with taking into account 
random deviations of base pitches were taken into consideration. The deterministic model of the gear for idle running 
was examined by a given form of viscous damping. The type of vibrations was specified for different parameters and 
their levels as well as the search for the symptoms of chaotic motion for low levels of damping were also within our 
scope of interest. For the suitable combination of external forces, backlash, varying meshing stiffness as well as low 
damping, it appears that the contact of the driving flank of the tooth of the pinion and the opposite flank to the driven 
one of the tooth of the driven gear takes place. 
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1. Introduction 
 
 At certain conditions in gears a special type of vibrations occurs and it is caused by the 
existence of clearance. It commonly is known as rattle, hammering or clatter. Generation of these 
vibrations in gears is due to separation of the teeth on a theoretically correct line of action. In the 
case of instantaneous tooth engagements (so called vibro -impacts) these vibrations can appear on 
the second line of action, which corresponds to the reversible motion in relation to the nominal 
rotational motion of the gear. This phenomenon increases levels of vibrations and noise, especially 
at unloaded and lightly loaded gear transmissions e.g. in vehicles and machine tools. 
 The problems on rattle vibrations and noise is widely represented in the literature. Design 
practice in the field of building gearboxes proves that there is a manner of avoidance of rattle 
vibrations by means of experimental choice of parameters concerning elements of the whole 
driving system, and especially, the clutch. Singh, Xie and Comparin in [8] analysed from this 
aspect the driving system with a gear transmission and frictional dual-stage clutch having non-
linear characteristic with hysteresis. The authors’ goals was to examine the model of an 
automotive transmission, in which the rattle vibration problem by idle run is possible, and to verify 
existing formulae as well as build new ones in order to eliminate such vibrations by means of 
proper design and choosing parameters of the clutch. The computational problems, with regard to 
gear rattle for idle run, were also investigated by Padmanabhan et al [6].  The continuation and 
development of these subjects were Singh’s and co-authors’ papers (Kim and Singh [5]). 

 
2. The Models of Gears for Examination of Rattle Problems 
 
 In the mathematical models in Singh’s and his co-workers’ papers [8], [5] there are introduced 
the drag torques, which are tied with each i gear wheel in the gear stage and described in the form 
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of sums of components which are dependent of the rotational speed Ωi and vibration velocity ivϕ& . 
 It is reasonable to examine the dynamic behaviour of the model shown in Fig.1, but in the case 
of damping forces described by the proportional mesh damping. The description of the variable 
gear meshing stiffness for spur gears and of deviations relevant to corresponding flanks of gear 
teeth is also introduced into the equations describing this model: 
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 We assume next that in the system there is a dual stage clutch (dry friction clutch) with non-
linear characteristics without hysteresis of the second stage. The formulae characterizing its 
stiffness and damping may be written in the following form: 
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where: Ψlim- transition angle of the clutch, Hc- hysteresis, sgn - sign  for transfer function. 
In the new co-ordinates ( 4331iii uψ1,2;i;ψ ϕ−ϕ==ϕ−ϕ= + ; u- gear ratio) after the elimination 
of rotational motion Eqs. (1) have the form: 
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where: Ji - equivalent moment of inertia (i = 1,2,3); Ii- moments of inertia of the flywheel, the 
clutch hub, the input gear (equivalent value) and the output gear respectively, (cf Fig.1,  i = 
1,2,3,4); r3 = rb3, r4 = rb4  - base radii;  cc1, cc2, cs, cg - viscous damping in clutch, in shaft, and 
equivalent value in the mesh zone; kc1,kc2, ks - stiffness by analogy with the foregoing; kg(t)- 
global meshing stiffness- the value calculated for each zone of the mesh; F- symbolic description 
of the mesh function which  depends on time, on the mesh zone, on static deflections, on current 
difference between values of  single pitch deviations for the pinion and wheel ψer as well as on  
backlash  ψη  (in Eqs. (1) values xer and xη respectively). In calculation value of I3 should include 
all the gear wheels that are in reality behind I3 (moments of inertia I5 up to I8, except for the value 
I4, remaining unchanged, r5 up to r8 - base radii respectively). Thus, for three gear pairs this 
moment of inertia is I3’ = I3+I5+I7+I 6(r5/r 6) 2+I 8(r7/r8) 2. Now one can observe the vibrations of 
the input gear with the moment of inertia considerably bigger than the one that describes the 
output wheel.  

  
I 1 
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kc ks

k g
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3, rb3 
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Fig.1. Simplified model of the gearbox [8] 

 
 Input torque excitation [6] has the form: 
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where: Ne -number of cylinders; l=1,2,...; Ωe- engine rotational speed; ϕal -phase. By simulation of 
the idle run there are taken for simplicity only the first two engine harmonics and the mean engine 
excitation torque may be assumed as equal to zero. 
 Excluding deviations relevant to corresponding flanks of the gear teeth, the   mesh function for 
constant stiffness may be written in the formula (in translational co-ordinates): 
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where: x-relative displacements between gears (for a given stage of the gear 1i1iii rrx ++−= ϕϕ ). 

 The presented considerations show the need for working out a simplified model of the gear. 
With regard to common usage of a single-degree- of- freedom model describing torsional vibration 
of gears, it is reasonable to examine its dynamic behaviour at the same conditions as the model 
described by Eqs. (3). It is obvious in such a case that we exclude possible influence of other non-
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linearities in the whole system on dynamics except for the backlash in gears and that only basic 
physical parameters of the system (equivalent values) as well as of the gear wheels are within our 
scope of interest.  
 The introduction of dissipative forces in form of an equivalent viscous damping and variable 
stiffness for spur gears leads to the equation describing displacements of the gear that can be 
written as follows: 
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where: Mz - equivalent mass reduced on the input shaft; m1, m2 - reduced mass of the pinion or of 
the wheel respectively; cg - equivalent damping; kgI - meshing stiffness of the single pair of teeth 
(generally, for low loads its value is less than the one for the nominal conditions); )x,x,x,t(f er η  - 
function describing the mesh and the changes of global meshing stiffness dependent of time, 
displacements, deviations of teeth and of the backlash; P - constant meshing force as a result of the 
static balance of the input and output torques; Ti - amplitudes of external input forces expressed by 
torques; r1 = rb3 -  base radius of the pinion. 
 In the case of spur gears the static deflection xst is determined by the use of   the stiffness of the 
single-pair teeth.  Now displacements are expressed in relation to the static deflection and to the 
nominal conditions of loads and ζ stands for the dimensionless damping factor. Introducing 
dimensionless relative mesh frequency ν = z1Ωe/ωn, and substituting dimensionless time  
for real time t into Eq. (6), we can presented this equation of motion in the following form: 
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B0 = 0 enables investigation of the gear motion in case of zero value term describing constant 
loads. Omitting the tooth deviations additionally leads to the theoretical description of a gear 
manufactured without errors. 
 In this case, the simplified description of meshing stiffness as by Sato et al.[7] was 
implemented and its values were referred to a single-pair of teeth. For cyclic time τ= t-
entier(t/Tz)Tz and τ1=0.1(εα -1)Tz or τ2=0.9Tz the dimensionless resultant stiffness is given in the 
form: 
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where: 
εα -tooth contact ratio. 
 The description of tooth deviations, which significantly influence the gear dynamics, was 
adopted from literature (e.g. from paper [2]). The case of single pitch deviations  (pitch errors) for 
the pinion and the wheel is taken into account in the analysis.  Suitable flank deviations having an 
influence on the gear dynamics are included in ISO [4]. 
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3. Numerical Examples 
 
 
 
 

 The computer simulation was based on the Eqs. (3) and (7). These equations were solved by 
the use of Gear’s method.  Computations were conducted for the gear with the number of teeth 
equal to z1= 20 up to 24, z2 =50 up to 57, for the tool displacement factors for the pinion and the 
toothed wheel x1  in a range of  0 - 0.28 and  x2= 0, respectively and for module pitch of the gear 
mn=2 mm. 
 According to the Eqs. (2), the non-linear characteristics of the clutch were introduced (kc = 5 up 
to 10 Nm/rad and  Hc = 0.15 Nm). The Fig.2a shows an example of relative displacements between 
gears for this model. In this case no teeth deviations was assumed (both toothed wheels were 
manufactured with no errors). It was also assumed, that the stage of the spur gear being analysed 
has the backlash within the boundaries xη =0.08 - 0.24 mm  - the rest of data is based on the 
analysis from the paper [8].   
 The vibration spectrum (Fig.2b - Fast Fourier Transform - FFT method) depends on the 
damping level, which is determined by the use of an equivalent system describing the same gear 
and groups its significant components at the lowest band of frequencies. It consists of the 
fundamental engine harmonics compatible with the force spectrum. The first (cir. 10 Hz) and 
second natural frequency (cir. 470 Hz) is clearly visible too. It is easy to notice, that at the 
spectrum no frequencies are connected with the mesh frequency fZ =360 Hz.  
 Reducing Eqs. (3) in order to examine only the description of the gear (Eq.(7)), the simulation 
was performed for the following cases: 
1.  For the equivalent moment of inertia for all moments connected with the input shaft and the 

whole system considered in Eqs. (7), 
2.  With regard to all the moments of inertia which there are behind the considered gear and are 

connected with the input shaft (I1=I3
’), 

3.  For the isolated gear, with only actual parameters I1 and I2. 
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Fig.2.  Examples of relative displacements between gears (a) and theirs spectrum (b) for Eqs (3) 
 

 The first terms of the time series  (Eq. (4)) were accepted as the relation T1/TN=(T1/r1)/PN= 
0.25932 and T2=T1/4. The results are presented in Fig. 3.  As it is visible on the basis of examples 
shown here, for the constant level of damping the double-sided rattle vibration imply generation of 
considerable dynamic forces. In the case of data for an isolated gear it gives unrealistic values of 
frequencies and amplitudes. For this reason, it is necessary to introduce into the Eq. (7) the 
equivalent parameters of mass and inertia (the first and second versions of data). 
 The example illustrated in the Fig.4, refers to the gear with random base pitch deviations 
|xpi|<0.5 and |xpj|<0.6  (ranges of values of the base pitch deviations xpi, xpj for both toothed wheels 
in relation to the static deflection i=1, ..., z1; j=1,..., z2). The spectrum appropriate for this case is 
presented in the Fig.4b. In the last case the abscissa is described by the relative frequency f*. 
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Figs.3. Relative displacements between gears (a) and dynamic forces  (b) for the constant damping level ζ=10-3 and 
versions of data (2), respectively 

 
 The dimensionless damping factor was equal to: 10-6, 10-5, 10-4, 10-3 or 10-2. In the last case we 
obtain steady periodic vibrations with two predominant frequencies that correspond to the 
fundamental frequencies of the external excitation.  So, in the spectrum we can observe relative 
frequencies corresponding with the real engine frequencies f01=Ωe/π and f02=2Ωe/π, as well as the 
rotational frequency f1=Ωe/2π and its harmonics. Similarly, as in the previous examined model, at 
the spectrum there are not any frequencies connected with the mesh frequency (in this case it 
would be a spectral line for the dimensionless relative frequency f*=0.01859245). For example for 
ζ=10-3 the most distinctive is the frequency f*= 0.00155 that with a high degree of accuracy, 
corresponds to  f01= 15Hz, while the other important frequencies correspond with its harmonics. It 
is worth mentioning that for the considered variants of data, the value of the natural frequency f3 is 
very close to that calculated from Eq. (7).  However, it is true only under the condition that inertial 
parameters are determined for the equivalent system with input moments of inertia referring to the 
clutch shaft.  By the diminished level of damping the vibration spectrum broadens and 
simultaneously the band of important frequencies is ‘condensed’.  
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Fig.4. Dynamic forces (a) and Fourier transform for the displacements (b), ζ =10-3, η =16.6666, |xpi|<0.5 and 
|xpj|<0.6 

 

 The research into possibilities of generation of the double-sided impacts and the ranges of 
values of parameters giving such a type of vibration can be effectively using bifurcation diagrams. 
For this purpose the results of simulations were sampled according to the meshing period. In this 
way we obtained diagrams that were a source of information on the vibration type as well as the 
limits of the displacements in gears (cf. Dyk [3]). The example is presented in Fig. 5 for the results 
sampled according to the mesh period made on the basis of the calculations for the constant level 
of damping and varying backlash. 
 The problem of chaotic motion in the models of gears was researched, among others, in the 
papers mentioned in section 1. In the paper [7] (Sato et al.) Lyapunov exponents were calculated 
for the similar form of equations. The considered solutions of equations without random excitation 
for low levels of the viscous damping also reveal positive values of Lyapunov exponents 
(exponents on the basis of a time history cf [1]). For instance for the data as in the example shown 
in Fig. 4 but without the base pitch deviations xpi, xpj , according to the Eqs.(7) and (8), the 
maximal exponent is equal to 0.0097319731; enlarging the damping up to ζ=10-2 gives the 
negative values practically near zero. 
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Fig.5. Bifurcation diagram (z-η plane, constant value of dimensionless damping factor ζ=0.01) 
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4. Concluding Remarks 
 
 The rattle vibrations develop in the low damped system, which is subjected to the variable 
external load with the zero (or very low) average components. The determination of the range of 
parameters, which affect the generation of the rattle vibration, can be useful in attempts to 
eliminate it from real systems.  
 The most frequent is the lack of contact of the driving and driven flanks of teeth. It results in 
so-called single-sided impacts. For the suitable combination of external forces, backlash, varying 
meshing stiffness as well as low damping, it appears that the contact of the driving flank of the 
tooth of the pinion and the opposite flank to the driven one of the tooth of the driven gear takes 
place (double-sided impacts). 
 It is worth mentioning, that by the low damping levels when for considered descriptions and 
amount of the external excitation, often the aperiodic, chaotic (and random, for Gaussian 
distribution of the pitch deviations) character of vibration   is manifested. For this reason, it is 
impossible to predict precisely the dynamic loads.  
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